If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10d^2-29d+10=0
a = 10; b = -29; c = +10;
Δ = b2-4ac
Δ = -292-4·10·10
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-21}{2*10}=\frac{8}{20} =2/5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+21}{2*10}=\frac{50}{20} =2+1/2 $
| 83=x=59 | | 30=2x+6-10x | | -9=4r=4r-9 | | 326+n=742 | | —4m+5=-15 | | 3v^2+4v+9=0 | | r^2+15r=500 | | 5v^2-27v+10=0 | | 5d^2-12d+4=0 | | 198*x=200 | | 40x-25=15 | | 2s+16=42-6 | | y*y=81 | | 4(8z+4)(5z+10)=0 | | 3(b+7)+2(b+4)+5b=0 | | x+0.25x=83333 | | −d^2−12d+4=−6d^2 | | x=0.25x=83333 | | g÷8/5=1/ | | (3m-1)^2-12=0 | | −d^2−12d+4=−6d2 | | -27=3(2w+4)+9 | | −d2−12d+4=-6d^2 | | 12/3x-3/4=3/4 | | 12/3x-3/4=3$ | | 11y^2-19y-10=-4y^2 | | -2a+5+10a-9=0 | | 3(k−47)=72 | | 18+5x+7x=180 | | (2z+9)=(4z-3) | | 40n^2=230^3 | | 7(g-82)=98 |